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Abstract—We present a novel radar-based system for real-
time indoor positioning and detection of objects and human-
bodies with low-quality, inexpensive sensors. Using modern deep
learning methods, we avoid the use of expensive hardware and
computationally-expensive signal processing methods for object
detection.

We train our model on mini–Doppler maps, collected via
software defined radios. Crucially, our system is different from
existing RF-based detection systems as it operates in a less
crowded frequency range of 433 MHz, allowing us to use inex-
pensive off-the shelf hardware. Our system, based on the VGG-
16 model, reports high-accuracy results on: (1) classification of
different objects/materials (plastic, glass, metal); (2) detection and
classification of multiple visually and materially similar objects
and the human-body; and (3) Simple object detection at different
distances between the transmitter Tx and the receiver Rx.

WALDO, using low frequency radio waves, is able to handle oc-
clusions and bad lighting environments. Our results demonstrate
that Deep Learning methods can be combined with inexpensive,
low-frequency radars to achieve high accuracy in real-time on
various useful tasks.

I. INTRODUCTION

Radio-based detection and location systems have seen huge

advances in the past decade. Beyond the usual industrial

and military uses, radar has been used in areas as diverse

as unsupervised monitoring of adults [1], medical diagnosis,

autonomous vehicles [2], [3], load-balancing energy in smart

homes [4], improved virtual reality experiences, and even for

ensuring social distancing during a pandemic1.

Radar systems overcome limitations posed by vision and

laser based approaches which are often limited by difficult

light and weather conditions, presence of occlusions, and high

deployability costs. RF-based systems are often better for

privacy since they do not involve visual surveillance of the

surroundings; they do not involve wearables, so they don’t

require user compliance and can operate in the background.

Micro-doppler signatures, which are rotational and transla-

tional components of a body useful for identifying unique

dynamic objects and movements [5] can be analysed using RF-

waves, enabling indoor radars using portable, readily available,

low-cost software defined radios.

1https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-
for-public

Fig. 1: System setup for detection of standing human, distance

between Transceiver (Tx) and Receiver (Rx) is 4m

Deep learning has proved to be a powerful approach for

solving pattern-recognition problems [6]. Using the immense

computational power of modern graphics processing units, it

can achieve human level (or beyond) performance in several

image and audio classification tasks. Deep neural networks

(NNs) with multi-layer non-linear structures allow us to extract

useful representations of raw input in the deeper layers of the

NN, which capture features important for success on down-

stream tasks. Critically, these features often exhibit invariance

to viewpoints, lighting conditions, noise, and other transfor-

mations, providing powerful generalizations over unseen data.

Although the typical approach of extracting radar reflections

and identifying objects from the shape of point-cloud of

reflections has been successful, the task becomes increasingly

difficult as multiple objects of various sizes are introduced [3].

Further, as the number of, and similarity between, classes of

objects increases, the performance of classifiers using pre-

defined features worsens significantly [7]. So, Radar Spectra

generated by multi-dimensional Fast Fourier Transform (FFT)

has emerged as an effective representation – it is not only

capable of preserving all the information in the raw signal,

but also serves as a data representation upon which NNs can

operate (in a similar fashion as in vision). The automation

of the feature extraction process in NNs, combined with the

spectrogram representations of the signal, results in a powerful

combination: it ensures that (important but complex) parts of

the signal which might be ignored by manual feature selection

can be correctly cast as significant by NNs.
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Deep Learning methods which work on the radar spectrum

after multi-dimensional FFT have been successfully applied

in tasks such as human fall detection [8], human pose estima-

tion [9], [10], and human-robot classification [11]. It has also

yielded successful results for classification of objects and other

traffic participants for scene understanding, which is critical in

automated driving [12]. Notably, this approach has been able to

extract micro-doppler signatures from the full radar spectrum.

However, most of the work done in this area relies on the use

of multiple expensive and specialised hardware components

operating in the over-crowded high frequency WiFi channel

(f ≥ 2.0 GHz). In general, the use of low-frequency radio-

waves for enabling object (or human) detection is not an area

which has seen much exploration.

In this paper, for the first time, we demonstrate radar-

sensing with deep learning using inexpensive, off-the-shelf

software radios (utilizing low-frequency radio waves) in an

indoor environment to:

1) Classify different objects/materials (polyethylene, glass,

metal) with high accuracy

2) Detect human body, multiple visually and materially

similar objects with high accuracy.

3) Successfully perform simple object detection up to a

range of 8m.

Our experiments demonstrate that deep neural networks can

be applied on full radar spectra to carry out (the otherwise

intractable task of) object detection and localisation even with

low-frequency radio waves. Our approach was inspired by

the use of low-frequency waves (around 20 kHz) by certain

owls. These animals are able to localise their prey during

night-time and through occlusions due to their heightened

sensitivity to low-frequency waves [13]. Due to its portability

and cheap deployment costs, our system has the potential to

be easily scaled to larger areas and developed to perform well

in different environments.

II. BACKGROUND

We review recent literature in object-detection, material-

classification and grid-based localisation in radar-based sys-

tems. We specifically look at how deep-learning and classical

machine learning methods have been utilised.

Deep neural networks have played a versatile role across

different object detection tasks and radar-based methods. Yeo

et al. developed a radar based system for material and object

detection [14]. They experimented with 26 materials which

included complex composite objects, transparent materials,

and human body-parts. Their model uses a random forest

classifier coupled with 10 fold cross-validation technique and

achieves high accuracy on both material and human body-

part detection. However, such extensive classification was only

possible by using a Google Soli chip operating at 60Ghz.

On similiar grounds of human-detection, Jin et al. developed

a mmWave radar capable of real-time tracking and detecting

patients, with the help of DNNs [15]. The mmWave radar

is used to collect doppler patterns of the subject in motion,

which eventually serve as inputs to the CNN-based classifier.

Their model is able to generalize well on test data, and

serves the potential to be scaled to different environments,

while taking into account more varied motions. Amin et al.

have also utilized DNNs in the domain of human-motion

detection. DNNs are used to determine the relative significance

of different regions of spectrograms, generated from data

collected via a radar, which can then be applied to detect

different regions responsible for human motion [16]. Radar

coupled with deep learning has also been used in detecting

different objects in a scene for self driving cars. Patel et

al. [2] apply deep convolutional networks directly to regions

of interest (ROI) in the radar spectrum and achieve accurate

classification of different objects in the scene.

Hicham et.al [17] present a smart monitoring system based

on 433 MHz using an arduinonano, arduinouno, a GSM

module and a buzzer module called SMIS (Smart monitor-

ing information system). The Arduino uno acts as the data

gathering unit and the GSM acts as the transmission module.

The RF emitter and transmitter both operate in the 433 MHz

band. SMIS operates in real time by sending a message every

500ms to the RF receiver. If the object is not in the remotely

monitored area, the receiver doesn’t get any message and

SMIS sends an SMS to the object’s owner using the GSM

module. During this process, the buzzer is also activated to let

the user know that the object is out of the monitored area. The

use of the 433 MHz is preferred for SMIS as it can transmit

over very long distances without requiring high power input.

This wireless frequency band is also an open source alternative

and available worldwide, making it an apt choice of use for

our proposed experiments.

Using techniques inspired by recent works, we propose an

alternative system which aims to achieve considerably high

accuracy in object-detection, localisation, material classifica-

tion, and human detection with the help of a low-cost radar

setup operating on low-frequency radio waves.

III. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN) has been the main

workhorse of recent breakthroughs in understanding images

[18], videos [19] and audios [20]. Below we describe the basic

building blocks of a CNN that are relevant to this paper.

Deep Neural Network: A deep neural network contains

multiple layers of neurons that extract information from the

input signal. Each neuron receives input from the neurons in

the previous layer and combines them through weights and

a nonlinearity (e.g., softmax). Mathematically, the value of a

neuron ani at the n-th layer is σ
(

∑

j w
n
ija

n−1
j

)

, where an−1
j

are the neurons from the previous layer, wn
ij are the weights

and σ(·) is a nonlinearity.

CNN: In CNN, neurons in a layer are locally connected to

a few neurons in the previous layer, contrary to the ordinary

neural networks where each neuron in a layer is connected to

all the neurons in the previous layer. This local connectivity

allows CNNs to even learn sparse features present in data. All

the neurons in the same layer of a CNN share the weights,

and the value of neurons in a CNN can be computed as the



convolution of a weight kernel with the neurons in the previous

layer, that is al = σ
(

f l ∗ al−1
)

, where ∗ is the convolution

operator, f l refers to the weight kernel at layer l, and al is the

neurons in layer l.

Fig. 2: CNN architecture for classification task, where x1, x2

and x3 are feature maps, s shows the class scores, and c∗

refers to the label. The Softmax loss function compares the

score vector with the label.

Besides the typical convolutional layer, the following build-

ing blocks are relevant to this paper:

1) Batch Normalization (BN) Layer [21]: BN normalises

activation value and can be represented mathematically

as,

BNγkβk(xk) = γk
x
k + βk,

where x
k is some input tensor, and γk and βk are learnt

during optimization process.

2) Dropout Layer: Dropout is a technique used to ignore a

percentage of randomly selected neurons during training

to improve generalisation performance of the network. It

is an approach to regularisation which helps reduce in-

terdependent learning amongst neurons by adding noise

to the training process [22].

3) Softmax Layer: In classification tasks, the final layer of

the network outputs a score for each class (i.e., a vector

of scores). The Softmax loss is used to measure the

difference between the class scores s = {sC}
k
C=1 and

the target label C∗ as follow:

LSoftmax (s, C
∗) = − log

esC∗

∑

C esC

where sC∗ is the score prediction of the target class.

Finally, the CNN computes class scores for new input

and predicts it as the class with the highest score, as

shown in Figure 2.

IV. EXPERIMENTAL DESIGN

In previous experiments, a CNN was used with off-the-

shelf Software-defined Radios (SDRs) operating at 433MHz

to simply detect the presence and absence of an object in an

enclosed space [23]. Building on those initial results, in this

paper we use CNNs for three more complex tasks: (1) Object

detection/material classification (polyethylene terephthalate,

glass, metal), (2) Detection of multiple visually and materially

similar objects and the human-body, and (3) Object detection

with increasing distance between Tx and Rx. As in the general

schema, the method for each experiment follows four steps,

namely data collection, preprocessing, feature extraction, and

classification. The preprocessed representation is fed as an

input to CNN which performs the feature extraction process.

Fig. 3: The 3 different objects and materials we classify in the

first set of experiments

A. Hardware and Software Setup

We use a hardware platform to send and receive signals and

software to control the transmission and run the classification

algorithms. The transmitter (Tx) comprises of a Raspberry-Pi

3 and the receiver (Rx) is made of a RealTek Software Defined

Radio (RTL-SDR) dongle and an off-the-shelf dipole antenna.

Across all of our experiments, the dipole antenna is directed

towards the receiver. We use Python libraries pyrtlsdr

and scipy for interfacing and transmitting a continuous

narrowband FM wave centred at 433 MHz (with a bandwidth

of 8 MHz). The signal is sampled at 2.048 MS/s in raw I/Q

form with each recorded data point/sample being 0.5s long.

B. Data Collection & Labelling

We first perform an initial experiment by training a CNN

to detect the presence and absence of an object in a closed

room. The CNN is able to achieve a near perfect accuracy

on this simple task. Following this, we systematically explore

the potential of low frequency radio-based object detection

systems for everyday surveillance tasks. For this, we gradually

increase the complexity of our experiments.

Three datasets, namely DA, DB , and DC are collected in

a closed room of dimensions : 8.5m × 5.5m

1) DA: Building on system used by [23] for detecting

objects, we conduct experiments to classify three dif-

ferent types of objects and materials. For this, we use

three bottles of roughly the same dimensions, each

made of different materials – polyethylene terephtha-

late (PET), steel, glass. The three bottles (polyethylene

terephthalate, steel, glass) have height and diameter

of (24 cm, 7 cm), (25 cm, 6.5 cm), and (26 cm, 7 cm)
respectively. The bottles are placed exactly in the middle

of the Tx and Rx placed 2.1 m apart. We collect 2000

samples for each bottle. Figure 3 displays the three

bottles used for this experiment.

2) DB : Through our second experiment, we want to test if

our system can learn to differentiate between multiple

objects of the same class and humans simultaneously. To

test this, we train a network on spectrograms of single

PET bottle, two identical PET bottles placed 30 cm apart



in line-of-sight of the antenna, human in the middle, and

no objects placed between Tx and Rx. For each of these

cases, 2000 samples are collected with Tx and Rx placed

4 m apart.

3) DC : Following the above experiment, we try to find

out the impact of range of our setup on its detection

capabilities. We collect datasets by gradually increasing

the difference between Tx and Rx. A total of three

datasets are collected at with distance between Tx and

Rx at 4m, 6m and 8m; for each of the mentioned cases,

3000 samples each were collected, each, with the bottle

placed in line-of-sight and with no bottle in the middle.

We train three separate networks to examine how the

accuracy of simple object detection is affected as the

range is increased.

(a) (b)

Fig. 4: Spectrograms for a) presence of human-body and b) ab-

sence of object/human in the room for DB . Indistinguishable

for humans, but CNNs can find useful patterns to classify.

C. Preprocessing

Using the radar output from the system setup, Short Time

Fourier Transform (STFT) was performed on each recorded

I/Q sample to generate the spectrogram in the frequency-

time domain. STFT visualises the intrinsic instantaneous

frequency components of the signal spectrum which allows

the micro-Doppler signal to be visible. STFT is a Fourier

related transform in which we divide a longer time signal into

shorter segments of equal length and then compute the Fourier

transform of each of the shorter segments separately. For an

arbitrary signal x(t) in the time domain, STFT is defined as:

STFTx[n, k] = X[n, k] =

n+(N−1)
∑

m=n

x[m]e−j 2πk

N
m,

where k = 0, 1, . . . , N − 1, and the discrete variables n and

k represent time and frequency respectively. The STFT at a

certain time n corresponds to the FFT of the sequence from

samples x[n] to x[n+ (N − 1)] [24].

We plot the changing spectra of the input signal, resulting

in a spectrogram [25]. As no discernible differences are

observable in spectrograms of different classes, we retain their

original size of 288× 432. The RGB values are converted to

floating point integers and normalised (divided by 255.0), and

the resulting floating point matrices of size 288× 432× 3 are

fed into the CNN. Our results show that while the human eye

cannot find anything to classify here, CNNs can still identify

useful patterns.

V. EXPERIMENTS AND RESULTS

A. CNN Architecture

We start with a baseline architecture consisting of two con-

volution layers and two dense layers, then progressively vary

the hyperparameters to analyze their effect on performance and

arrive at the final model(s). The selected CNN model is based

on the VGG-16 [26] architecture which has shown remarkable

success in image recognition. In our final model(s), two or

more CNN blocks are followed by one Dense block. A CNN

Block is defined as:

CL → BN → CL → BN → MP → DL,

where CL is a Convolutional Layer with k neurons and kernel

size 3×3 with SAME padding. ReLU activation functions are

used in the convolutional layers to introduce non-linearity. BN

is Batch Normalization Layer, MP is Max Pooling Layer with

pool size (2× 2), and DL is the Dropout Layer. We define a

Dense Block as:

DeL → BN → DL → DeL → SL,

where DeL is the Dense Layer and SL is the Softmax

Layer. For classification, the output of the final CNN block

is flattened, and a dense layer with ReLu activations is added,

followed by BN and the final dense layer with softmax outputs

for classification. The number of neurons in the final Dense

Layer depends on the number of classes in our data.

B. Training and Inference

We use keras’ [27] application program interface (API)

built on top of TensorFlow [28] to create our models. We use

a system with 32 GB RAM and RTX 2070 GPU for training

our models.

We one-hot encode all labels belonging to different classes.

For multiple labels, we generate multi-hot encoded vectors.

We keep 20% of each dataset for testing and use 80% for

training and validation. We use Categorical-cross-entropy loss

for multi-class classification and Binary-cross-entropy loss for

the multi-label case, along with Adam optimizer and learning

rate of value α. A mini-batch size of 8 is used for training the

models, keeping 10% of the training data for validation
1) Object/Material Classification: The CNN model uses

two CNN blocks (32 and 64 neurons), one Dense block (with

512 and 3 neurons), α = 0.001 and dropout rate of 0.5 in both

the CNN and Dense blocks.

Classified/Actual Class Glass Metal Plastic

Glass 100% 4% −

Metal − 95% −

Plastic − 1% 100%

TABLE I: Confusion matrix for object and material classifi-

cation using spectrograms. The success rate is 98.0%

We formulate material/object classification as a 3-label

classification problem (results in Table I). We observe that

each class achieved a high success rate, resulting in an overall

accuracy of 98%. The result shows promise in the use of NNs

on spectrograms for detecting different materials.



2) Human-body/Multi-identical Object Detection: Here,

our model uses three CNN blocks (32, 64, and 128 neurons)

and a Dense block (512 and 4 neurons). In the first block,

Dropout is set to 0.7, and 0.5 is used for the other two blocks.

We set the learning rate to α = 0.0001 as a higher learning

rate in this case was not conducive for a higher accuracy.

Furthermore, while performing hyperparameter tuning we re-

move Dropout and Batch Normalization layers as it yields best

results.

It’s advantageous for us to use the 433 MHz sensor for the

detection of multiple objects, as it has a better penetration

when compared to the WiFi-spectrum. Penetration of RF

signals is inversely proportional to its frequency so the range

and performance of a 433 MHz sensor is significantly better

than a 2.4 GHz sensor especially in environments where

there are absorbing materials like walls, metals and human

objects [29]. At lower energies in free space, the incident wave

interacts with the material in various different ways which

might lead to it getting reflected, re-emitted and absorbed

uniquely depending on the nature of the material.

The task of detecting multiple identical objects and human-

body is formulated as a 4-label classification problem. The

results can be seen in Table II. The size of the objects under

detection are also comparable to the wavelength of the emitted

signal which makes it theoretically possible to detect them. We

observe a high accuracy for each class. This suggests that the

CNN is able to extract relevant features to distinguish between

a single instance of an object and two of the same objects

present together, implying that such systems have potential to

monitor multiple similar objects in an environment. Moreover,

this property combined with the high accuracy achieved in

human-body detection suggests that novel, competent and

inexpensive systems can be developed with further research

in low-frequency radar.

Classified/Actual
Class

1bottle 2bottles Human-
body

Air

1bottle 100% 1% − −

2bottles 30 cm apart − 99% − −

Human-body − − 97% 3%

Air − − 3% 100%

TABLE II: Confusion matrix for multi-object and human-body

detection using spectrograms. The success rate is 99.3%
.

3) Range Analysis: For studying the range of our setup, we

use a similar model architecture as used in 2) with three CNN

blocks (32,64 and 128 neurons) and a Dense block (512 and

2 neurons). Learning rate is set to α = 0.0001 and a dropout

rate of 0.5 is used in both the CNN and Dense block.

Detecting the presence and absence of an object is posited

as a simple binary classification task. In accord with the

results observed by Singh et al. [23], we obtain a high

accuracy for the detection task as the range of the setup

increases from 4m to 8m. It is interesting to note that

even after the distance between Tx and Rx is doubled, no

detrimental effect on the accuracy is observed. By using a

dipole antenna of 13 cm long, and increasing its end to end

distance, we optimize it to detect emitted waves up to 8

metres. The objects under detection are also kept in the line of

sight of the transmitter and receiver, which makes it easy for

our system to detect the emitted waves. Moreover, our setup

is ideal for indoor detection as it can transmit/receive over

long distances without requiring high power consumption on

a battery [17]. While this result is promising, it would be

interesting to find out how our system would perform if an

multiple objects are occluded behind one another.

Dataset Validation Accuracy Testing Accuracy

4m 0.98 0.99
6m 0.98 0.99
8m 0.98 0.99

TABLE III: Comparison of performance of CNN as the

distance between Tx and Rx is increased from 4m to 8m

VI. CONCLUSION AND FUTURE WORK

We show the capability of low-cost radars, solely backed

by deep neural networks, to perform well in different types

of object detection and classification tasks. In comparison

to traditional radar-systems, our approach distinguishes itself,

as it relies on low-frequency radio waves of the magnitude

one-twentieth of its contemporaries. This also means that the

radiated power level from our radar sensor is much lesser

than that of other radio sources such as WiFi or smartphones,

making it safe for prolonged exposure [30]. We demonstrate

that our system not only achieves high accuracy in multi-

class object/material detection with almost no explicit signal

processing, but it is also scalable to larger distances. Our

approach isn’t strictly limited to object-based detection, and

shows immense potential for detection of humans as well.

This opens up an opportunity for countless applications in our

day-to-day lives: Ambient-assisted living (AAL) services for

the elderly; human activity recognition to detect anomalies in

health; Multi-modal Internet of things (IoT) based systems for

patient monitoring in hospitals. As our paper primarily relies

on portable and inexpensive software defined radios, it can be

easily deployed within indoor environments.

Our future work aims at exploring the potential of our

system to perform motion detection by using low-frequency

FMCW waves, and to develop a real-time monitoring sys-

tem which can be used in several domains such as health

monitoring, theft detection, causality detection, pedestrian

surveillance, etc. However, the questions of immediate interest

about the robustness of low-frequency detection - is it possible

to accurately localise objects? what would be the scope of

such localisation? it possible to monitor a moving object in 3-

D space? When does the low-frequency aspect of our system

become a bottleneck? Our contribution indicates that further

research into these questions may be a very worthy endeavour

for the radar community.
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